

PDRs4All: Status of Our ERS Observations

ERS 1288 (PDRs4All) Community Telecons in Support of JWST Cycle 2 Proposals

Telecon #1 of 3

Ryan Chown (Western University), the PDRs4All Data Reduction Team*, and the PDRs4All Team

1 December 2022

* Ameek Sidhu (Western) Amelie Canin (IRAP) Boris Trahin (IAS, France) Dries Van De Putte (STScI) Felipe Alarcon (UMich) Ilane Schroetter (IRAP)

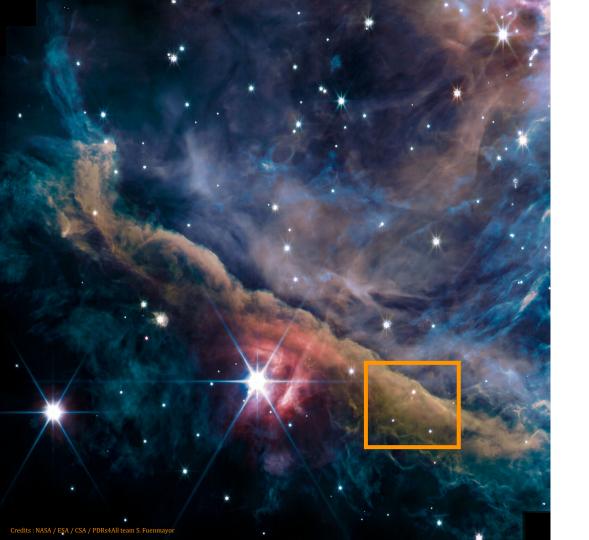
The PDRs4All Team

- PI Team : O. Berné (FR), E. Habart (FR), E. Peeters (CA)
- **Extended Core Team** : Alain Abergel, Felipe Alarcón, Edwin A. Bergin, Jeronimo Bernard-Salas, Christiaan Boersma, Emeric Bron, Jan Cami, Amélie Canin, Ryan Chown, Sara Cuadrado, Emmanuel Dartois, Daniel Dicken, Meriem El-Yajouri, Asunción Fuente, Javier R. Goicoechea, Karl D. Gordon, Lina Issa, Christine Joblin, Olga Kannavou, Baria Khan, Ozan Lacinbala, David Languignon, Romane Le Gal, Alexandros Maragkoudakis, Raphael Meshaka, Yoko Okada, Takashi Onaka, Sofia Pasquini, Marc W. Pound, Massimo Robberto, Markus Röllig, Bethany Schefter, Thiébaut Schirmer, Ilane Schroetter, Ameek Sidhu, Thomas Simmer, Benoit Tabone, Alexander G. G. M. Tielens, Boris Trahin, Dries Van De Putte, Sílvia Vicente, Mark G. Wolfire, Marion Zannese
- · Collaborators : 122 scientists, from 18 countries

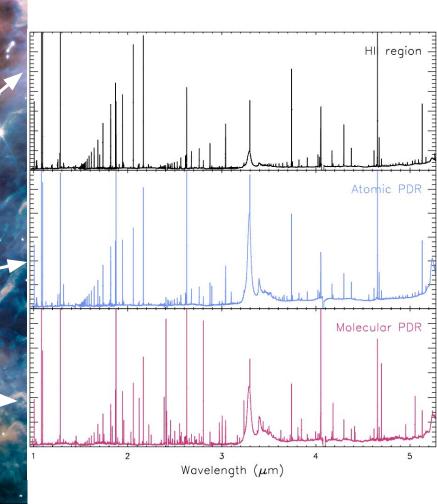
Young star inside

The inner Orion Nebula seen with JWST

25

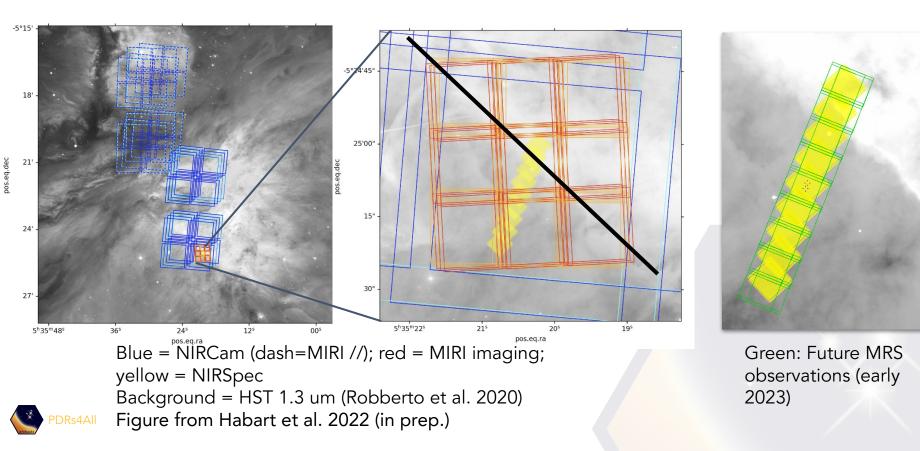

Young star with disk inside its

Filament


edits : NASA / ESA / CSA / PDRs4All team S. Fuenmayo

3 papers in prep :

- Peeters et al. : Orion bar spectroscopy
- Habart et al. : Orion Bar imaging
- Berné et al. : Protoplanetary disk imaging & spectroscopy


Outline

Our goal is to help you prepare for JWST Cycle 2

- 1. Summary of our observations and data reduction
- 2. Describe some of the issues we've encountered and fixes
- 3. Provide recommendations for dealing with these problems if you find them in your data

JWST Fields of View

Observation Checklist

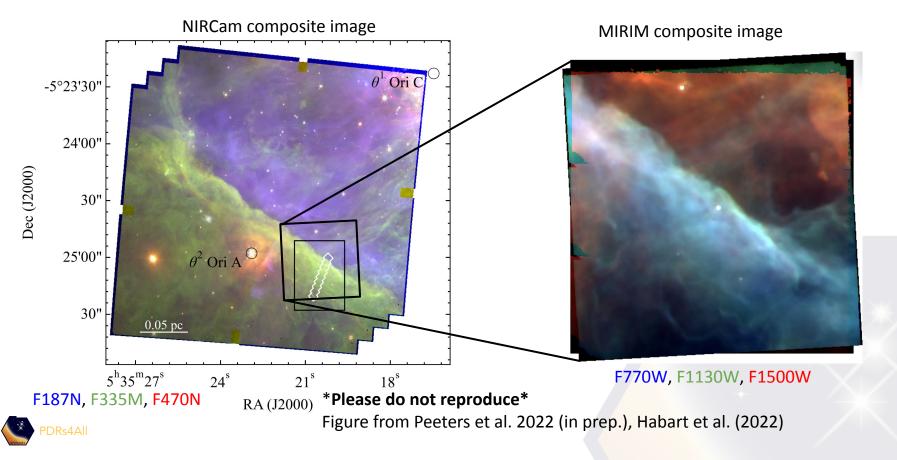
- ✓ <u>NIRCam:</u> 14 filters. 14 cover the Orion Bar, 8 cover parallel observation FoV (M43/NGC 1982)
- ✓ <u>MIRI Imager:</u> 4 filters, all on the Orion Bar
- ✓ <u>NIRSpec:</u> 9 pointings along a line ~perpendicular to the OB, each in 3 grating/filter combinations (spectral range 0.95-5.27 um, R~2700)
- MIRI MRS: to be executed early 2023. 9 pointings overlapping with NIRSpec FoV, covering 5-27 microns

Observation Details: Imaging

- NIRCam:
 - *Filters*: F140M, F162M, F164N, F182M, F187N, F210M, F212N, F277W, F323N, F335M, F405N, F470N, F480M
 - Mosaic: 1x1
 - *Dithering*: 4 positions (INTRAMODULE pattern), FULL array
 - Parameters: 2 groups/integrations, 2 integrations, RAPID readout mode
 - M43 observations with F182M, F187N, F210M, F212N, F300M, F335M, F405N, F410M from MIRIM parallel observations
- MIRIm:
 - *Filters:* F770W, F1130W, F1500W, F2550W
 - Mosaic: 3x3, SUB128 array
 - Dithering: 3 positions (3-POINT-MIRI-F770W-WITH-NIRCAM pattern)
 - Parameters: 5 groups/integration, 115 integrations, FASTR1 readout mode
 - Background observations (only for F1500W and F2550W -FGS lost during F770W and F1130W observations)

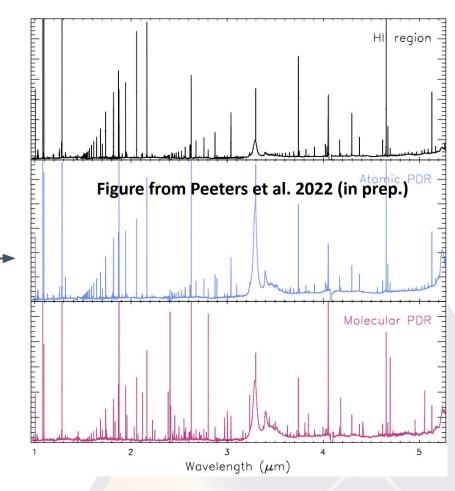
Observation Details: Spectroscopy

- NIRSpec:
 - *Gratings/Filters:* G140H/F100LP, G235H/F170LP, G395H/F290LP
 - Dithering: 4 positions
 - *Mosaic*: 9x1
 - *Parameters*: 5 groups/integration, 1 integration, NSRAPID readout mode
- MRS:
 - *Gratings*: SHORT, MEDIUM, LONG (5-28 microns)
 - *Dithering*: 4 positions (EXTENDED SOURCE pattern)
 - *Mosaic*: 9x1
 - Parameters: 47 groups/integration, 1 integration, FASTR1 readout mode
 - MIRIM parallel observations using F770W, F1130W and F1500W



Data Reduction

- Ran the pipeline as CRDS contexts and JWST pipeline evolve
 - Latest: CRDS 1017 (17/11/2022), pipeline development version 1.8.3+
- Significant improvements since arrival of data
- More progress to be made as in-flight reference files become available

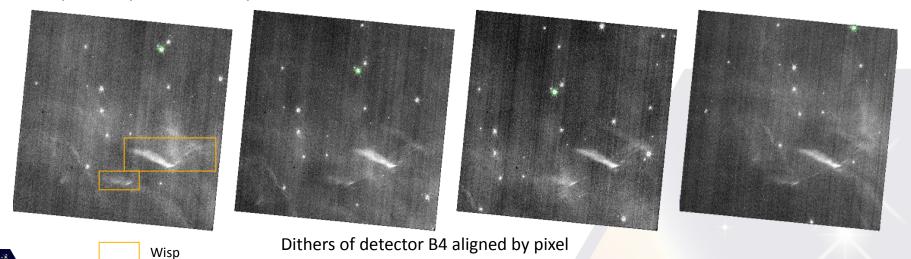


NIRCam and MIRI Imager Data

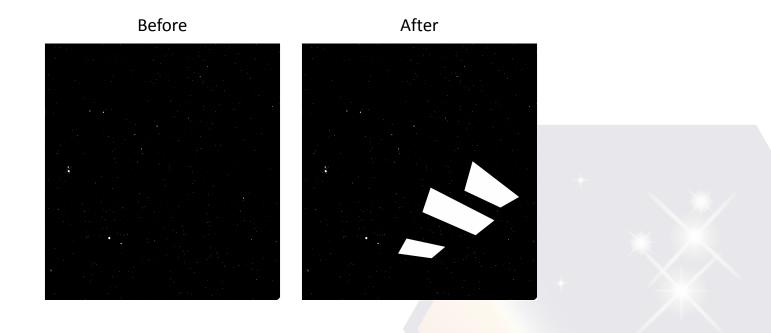
NIRSpec Data

- Beautiful spectra, lots of lines, lots of modelling underway
- Spectra extracted from apertures

Overview of Lessons Learned

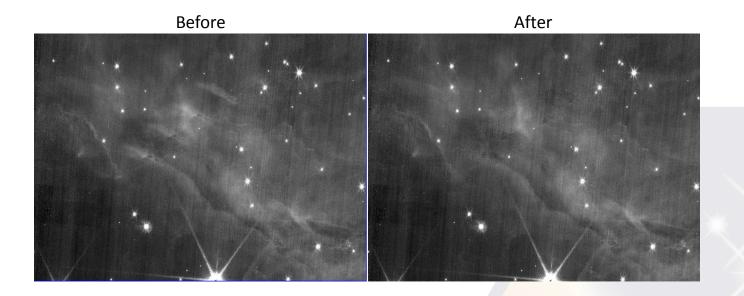

- NIRCam
 - Wisps
 - 1/f noise
 - WCS misalignment
 - SNR lower than expected in narrow filters (~10x lower for extended sources)
- NIRSpec
 - Outliers (very high/low flux), flux calibration, edges, WCS correction. All highly impacted by reference files. Many reference files still a combination of dummy and ground data.
 - Stitching cubes with different grating/filter combinations is best done outside of the pipeline
 - We detect lines as faint as $\sim 10^{-9}$ W m⁻² sr⁻¹ with SNR of ~ 10
- MIRIm
 - SUB128 array edge effects
 - Saturation reached at F2250W at ~56000 DN/s (higher than expected)

NIRCam: Wisps


"Wisps" are a contamination of the scene due to stray light. Wisps are located on the same pixels of the detector regardless of the dithers but the location depends on the observations.

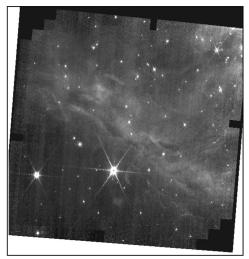
Wisps are particularly present on the detectors A3, B3 and B4.

NIRCam Wisp Correction


Changed manually the DQ array on calibrated files after stage 2 and before stage 3 (DO_NOT_USE flag).

NIRCam Wisp Correction

After correction: wisps are gone, but more noise in these areas because data have been removed


NIRCam 1/f noise Correction

1/f readout noise is not corrected in the pipeline

 \rightarrow stripes present in the images

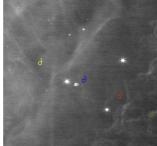
○ Correct for the effect of a variable background, mask pixels containing sources and subtract the median value

inspect the results for any unintended consequences

Before 1/f noise correction

After 1/f noise correction

NIRCam SNR


SNRs values ~10x lower than expected from ETC for extended sources

	Pupil-Filter	Noise Sky	SNR 1	SNR 2	SNR 3	SNR 4
	CLEAR-F140M	1.35	49	36	25	19
	F162M-F150W2	1.12	65	58	36	27
	F164N-F150W2	9.83	10	8	5	4
	CLEAR-F182M	1.04	227	138	96	75
	CLEAR-F187N	9.28	187	94	71	54
3.	CLEAR-F210M	1.18	96	74	47	38
I.	CLEAR-F212N	8.41	9	9	6	7
	CLEAR-F277W	0.29	350	365	211	182
ð	CLEAR-F300M	0.34	277	332	176	131
	F323N-F322W2	2.98	60	152	93	75
	CLEAR-F335M	0.57	382	1119	678	508
	F405N-F444W	3.71	326	209	131	98
	F470N-F444W	3.30	56	109	60	54
	CLEAR-F480M	0.73	257	499	258	198

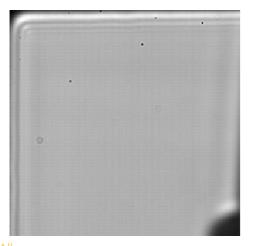
NIRCam SNRs

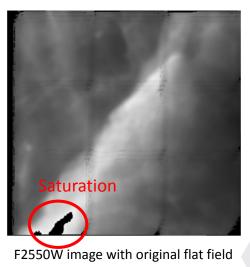
Pupil-Filter	SNR 1	SNR 2	SNR 3
CLEAR-F140M	622	504	579
F162M-F150W2	712	654	598
F164N-F150W2	140	127	109
CLEAR-F182M	1662	1341	1214
CLEAR-F187N	1306	881	765
CLEAR-F210M	940	819	633
CLEAR-F212N	148	144	107
CLEAR-F277W	1320	1417	1071
CLEAR-F300M	786	1007	627
F323N-F322W2	712	654	598
CLEAR-F335M	1392	2091	1760
F405N-F444W	4	845	593
F470N-F444W	259	448	270
CLEAR-F480M	942	1331	946

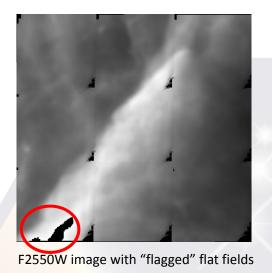
ETC sith NIRSpec SNRs

MIRIm: Lessons Learned

MIRIm SUB128 flat field present edge brightening (straylight features), especially at large wavelength (F1500W and F2550W).


1 No satisfactory correction at the moment


1st method:


○ Flag affected columns/rows as DO_NOT_USE (if sufficient overlap between tiles)

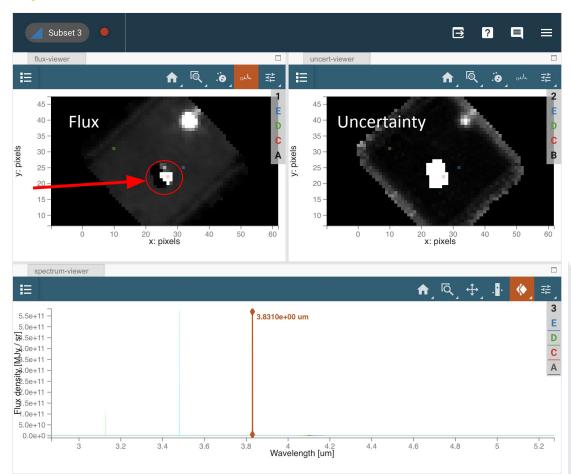
▲ trade off between having pixels for the overlap and removing the pixels with a worse quality 2nd method:

 \bigcirc Determine new flat field from overlap tiles (in progress)

SUB128 flat field

NIRSpec: Lessons Learned

- WCS offsets: off by about 2 arcsec
- Spikes/blobs: very high/low fluxes at narrow wavelength regions in the spectra
- Edge effects: lower flux along two edges of each pointing due to missing path-loss correction
- Flux calibration: pixel area reference file update helped, but work is ongoing
- SNR: we detect many lines down to ~ 10⁻⁹ W m⁻² sr⁻¹ with SNR of 10

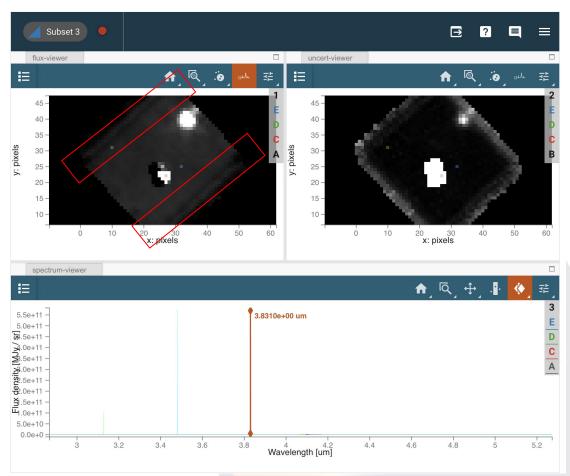

NIRSpec Outliers

Status

 Still present. Originate from reference files in Spec3. HelpDesk has been contacted. In our data, outliers are found in spatial clusters in the same parts of the FOV and same wavelengths in each pointing.

Recommendation

• No universal workaround yet. Just be on the lookout for these features.



NIRSpec Edge Effects

Status

- Low flux (by a factor ~2) along two parallel edges of each pointing
- Recommendation
 - We apply a mask on the outer ~6 pixels from the edge of each pointing until the reference files are updated to fix this

NIRSpec Flux Calibration

Status

• Relative calibration factor ~0.8 +/- 0.2

Recommendation

- Use the latest version of the pipeline (>=1.8.3) and CRDS >= 1017 (delivered 17/11/2022)
- Assume ~20% uncertainty on relative calibration of NIRSpec to NIRCam

NIRSpec Stitching

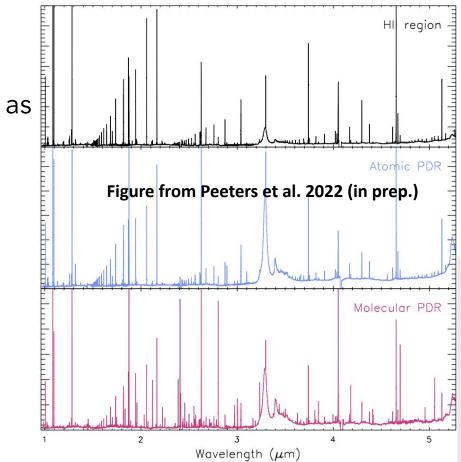
- Easiest to work with "stitched" cubes (all three grating/filter cubes combined)
- Pipeline will stitch cubes automatically, even create a mosaic (requires ~ 128 GB RAM)
- We stitch and coadd all cubes into a single spectral mosaic (9 pointings, 3 grating/filter combinations each), and deal with edge effects, etc. on our own
- First create stitched cubes for each pointing, then coadd them where they overlap spatially

Imaging/IFU Cross-calibration

- This is one of the Science Enabling Products (SEPs) Chown et al. 2022 (in prep.)
- We calibrate NIRSpec data off of NIRCam (~2% absolute cal. uncertainty)
- Relative calibration factor = NIRCam flux density / NIRSpec flux density
- Initial reduction from MAST led to calibration factors of ~ 10^{-9} . Reference file and pipeline fixes have brought rel. cal. to ~0.8 +/- 0.2 (Chown et al. 2022, in prep.)
- Sensitive to outliers, snowballs, wisps, WCS offsets, extended vs. point sources, etc.
- Still some work to be done (pipeline + CRDS)

Imaging/IFU Cross-calibration

Line/continuum contributions to NIRCam images (some highlights):


- F335M mainly traces the 3.3 um aromatic IR band (AIB; 50-80% contribution)
- F210M traces 2.12 um H_2 but also strong HI, He, lines
- F212N continuum fraction is higher than F210M
- F405N is a good tracer of $Br\alpha$

Stay tuned for Chown et al. 2022 (in prep); Habart et al. 2022 (in prep)

NIRSpec SNR

- Integration time = 11664 sec
- See APT file for more information
- We detect lines as faint 10⁻⁹ W m⁻² sr⁻¹, with SNR of ~10

Summary of Recommendations

Use the last version of the JWST pipeline and calibration reference files (<u>https://jwst-crds.stsci.edu/</u>)

NIRCam

- Mask out wisps in stage 2 DQ arrays, then run stage 3 Align _cal files (stage 2 products) with Gaia DR3 Correct for 1/f readout noise on _cal files

- Optimize pipeline parameters for better results (e.g cosmic ray detection threshold)

MIRIm

- Mask top rows/left columns of SUB128 array flat field Detect sources in the shorter wavelength and apply offset with Gaia DR3 to the longer wavelengths Optimize pipeline steps parameters for better results (e.g skip outlier detection/jump/rscd/first frame...)

<u>NIRSpec</u>

- Use pipeline >= 1.8.3 and latest CRDS >= 1017 Beware of outliers, blobs, edge effects, calibration offsets (of order ~1 with ~20% uncertainty) Perform stitching/coadding outside of the pipeline for now WCS offsets relative to NIRCam ~2 arcsec

